RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)	
FIRST YEAR [2018-21] B.A./B.Sc. FIRST SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018	
Date : 25/09/2018 COMPUTER SCIENCE (General)	
Time : 12 noon – 1pmPaper: I	Full Marks : 25
[Use a separate Answer Book for each group]	
<u>GROUP – A</u>	
Answer any one from question nos. 1 & 2 :	$(1 \times 2^{1/2})$
1. Write down the characteristics of the 2's complement numbers.	
2. Convert $(1199)_{12}$ to decimal and binary.	
Answer any two from question no. 3 to 6 :	(2 × 5)
3. Determine the possible bases in the following operations:	
a) $1234+5432 = 6666$	21/2
b) $\frac{302}{20} = 12.1$	21/2
4. a) Convert the following octal numbers to hexadecimal.	
(i) 1762.46	2
(ii) 6054.263	2
b) Subtract $(1011)_2$ from $(10110)_2$.	1
5. a) Define BCD.	1
b) Define weighted and non-weighted codes.	1+1
c) Define reflective code with a suitable example.	2
6. a) Convert $(101010110101)_2$ into Gray Code.	2
b) Prove $A \oplus \overline{A} = 1$	1
c) State De Morgan's theorem.	2
<u>GROUP – B</u>	
Answer any one from question nos. 7 & 8:	$(1 \times 2^{1/2})$
7. "A decoder with an enable input is called a demultiplexer" – justify.	
8. Differentiate between combinational logic circuit and sequential logic circuit.	
Answer any two from question nos. 9 to 12:	(2 × 5)
9. a) Derive the characteristic equation of J–K flip-flop.	4
b) Differentiate between latch and flip-flop.	1
10. Design a 4-bit BCD-to-Excess3 code converter circuit.	
11. Design a 4-input priority encoder with four inputs and three outputs including the valid output but	
with the truth table representing input D_0 has the highest priority and input D_3 has the lowest priority.	
12. Implement a three input exclusive OR gate using a suitable multiplexer.	

- × · (1)